On extensions of hyperplanes of dual polar spaces
نویسنده
چکیده
Let ∆ be a thick dual polar space and F a convex subspace of diameter at least 2 of ∆. Every hyperplane G of the subgeometry F̃ of ∆ induced on F will give rise to a hyperplane H of ∆, the so-called extension of G. We show that F and G are in some sense uniquely determined by H. We also consider the following problem: if e is a full projective embedding of ∆ and if eF is the full embedding of F̃ induced by e, does the fact that G arises from the embedding eF imply that H arises from the embedding e? We will study this problem in the cases that e is an absolutely universal embedding, a minimal full polarized embedding or a Grassmann embedding of a symplectic dual polar space. Our study will allow us to prove that if e is absolutely universal, then also eF is absolutely universal.
منابع مشابه
Locally subquadrangular hyperplanes in symplectic and Hermitian dual polar spaces
In [11] all locally subquadrangular hyperplanes of finite symplectic and Hermitian dual polar spaces were determined with the aid of counting arguments and divisibility properties of integers. In the present note we extend this classification to the infinite case. We prove that symplectic dual polar spaces and certain Hermitian dual polar spaces cannot have locally subquadrangular hyperplanes i...
متن کاملOn the simple connectedness of hyperplane complements in dual polar spaces
Let ∆ be a dual polar space of rank n ≥ 4, H be a hyperplane of ∆ and Γ := ∆\H be the complement of H in ∆. We shall prove that, if all lines of ∆ have more than 3 points, then Γ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.
متن کاملOn a Class of Hyperplanes of the Symplectic and Hermitian Dual Polar Spaces
Let ∆ be a symplectic dual polar space DW (2n−1, K) or a Hermitian dual polar space DH(2n − 1, K, θ), n ≥ 2. We define a class of hyperplanes of ∆ arising from its Grassmann-embedding and discuss several properties of these hyperplanes. The construction of these hyperplanes allows us to prove that there exists an ovoid of the Hermitian dual polar space DH(2n−1, K, θ) arising from its Grassmann-...
متن کاملThe uniqueness of the SDPS-set of the symplectic dual polar space DW(4n-1, q), n>=2
SDPS-sets are very nice sets of points in dual polar spaces which themselves carry the structure of dual polar spaces. They were introduced in [8] because they gave rise to new valuations and hyperplanes of dual polar spaces. In the present paper, we show that the symplectic dual polar space DW (4n− 1, q), n ≥ 2, has up to isomorphisms a unique SDPS-set.
متن کاملThe uniqueness of the SDPS - set of the symplectic dual polar space DW ( 4 n − 1 , q ) , n ≥ 2 Bart
SDPS-sets are very nice sets of points in dual polar spaces which themselves carry the structure of dual polar spaces. They were introduced in [8] because they gave rise to new valuations and hyperplanes of dual polar spaces. In the present paper, we show that the symplectic dual polar space DW (4n− 1, q), n ≥ 2, has up to isomorphisms a unique SDPS-set.
متن کاملHyperplanes of Hermitian dual polar spaces of rank 3 containing a quad
Let F and F′ be two fields such that F′ is a quadratic Galois extension of F. If |F| ≥ 3, then we provide sufficient conditions for a hyperplane of the Hermitian dual polar space DH(5,F′) to arise from the Grassmann embedding. We use this to give an alternative proof for the fact that all hyperplanes of DH(5, q2), q 6= 2, arise from the Grassmann embedding, and to show that every hyperplane of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 118 شماره
صفحات -
تاریخ انتشار 2011